CMSC201 Computer Science I for Majors

Lecture 21 – Project 3 and Miscellaneous Topics

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

www.umbc.edu

Last Class We Covered

- Dictionaries
 - Creating
 - Accessing
 - Manipulating
 - Methods
- Hashing
- Dictionaries vs Lists

AN HONORS UNIVERSITY IN MARYLAND

Any Questions from Last Time?

www.umbc.edu

Today's Objectives

- To understand more about how data is represented inside the computer
 - ASCII values
- To see the benefits of short circuit evaluation

To discuss details of Project 3

 Deep copying 2D lists

AN HONORS UNIVERSITY IN MARYLAND

ASCII Values

www.umbc.edu

ASCII Values

- ASCII is how text is represented in computers
 Just like binary is how numbers are represented
- In ASCII, every character has a unique, individual numerical code
 - Lowercase and uppercase characters are separate
 - Codes go from 0 to 127
 - Why 127?

UMBC

AN HONORS UNIVERSITY IN MARYLAND

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	0	96	60	×
1	1	[START OF HEADING]	33	21	1.00	65	41	Α	97	61	а
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	С	99	63	с
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1.00	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	H	104	68	h
9	9	(HORIZONTAL TAB)	41	29)	73	49	1	105	69	1
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	С	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D		77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E	1.00	78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r i
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	т	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	v	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	w	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	У
26	1A	(SUBSTITUTE)	58	3A	1.00	90	5A	z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	۸	124	7C	1
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]
			-					_			_

UMBC

AN HONOR	"сс			I D			uppercase					
	characters TA			BLE			letters					
	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0)	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	
1	L	1	[START OF HEADING]	33	21	1	65	41	Α	97	61	a
2	2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	c
4		4	[END OF TRANSMISSION]	30	24	\$	68	44	D E	100	64	d
5		5	[ENQUIRT]	32	20	70 £	70	45	-	101	66	e
7	,	7	IRFI I 1	39	27	i i	70	40	Ġ	102	67	
á	8	8	IBACKSPACE1	40	28	(72	48	й	104	68	9 h
9)	9	[HORIZONTAL TAB]	41	29)	73	49	ï	105	69	ï
1	0	A	[LINE FEED]	42	2A	*	74	4A	1	106	6A	
1	1	в	[VERTICAL TAB]	43	2B	+	75	4B	ĸ	107	6B	k
1	2	С	[FORM FEED]	44	2C	,	76	4C	L .	108	6C	1
1	.3	D	[CARRIAGE RETURN]	45	2D	-	77	4D	м	109	6D	m
1	14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
1	.5	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
1	.6	10	[DATA LINK ESCAPE]	48	30	0	80	50	Р	112	70	р
1	.7	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
1	18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
1	19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
2	20	14	[DEVICE CONTROL 4]	52	34	4	84	54	. I	116	74	t
2	21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U U	11/	75	u
2	2	10	ENCOSTRANS RIDCE	55	30	0	00	50	w	110	70	×.
2	2.5	19	[ENG OF TRANS. BLOCK]	55	38	8	99	59	X	120	79	W
2	5	19	IEND OF MEDIUMI	57	39	9	89	59	Ŷ	120	79	N N
2	26	14	ISUBSTITUTE1	58	34		90	5A	ż	122	74	7
2	27	1B	[ESCAPE]	59	3B		91	5B	ī I	123	7B	ĩ
2	28	10	IFILE SEPARATORI	60	3C	<	92	5C	ί.	124	70	1 I
2	29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	i	125	7D	}
3	30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
3	31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]
				symbols &					1	lowercase		
				I IIMI								5

8 All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Comparing Strings

- The <u>values</u> of the ASCII characters are used when comparing strings together
 - Which can lead to some "weird" results
 - >>> "cat" < "dog"

True

>>> "cat" < "Dog"

False

>>> "DOG" < "dog"

True

More on Comparing Strings

- Gets even more complex when you start adding in numbers and symbols
 - >>> "2" < "one"

True

>>> "good?" < "good!"

False

>>> "UK" < "U.K."

False

Rules for Comparisons

- To avoid (some) of these issues:
- Always use .lower() for comparing strings
- Pay attention to symbols
 - *e.g.*, spaces, hyphens, punctuation, etc.
 - Either remove them, or keep them in mind as part of the order

ASCII Characters to ASCII Values

- We can convert between ASCII characters and their values using ord() and chr()
- The **ord()** function takes in a <u>single</u> character, and returns its ASCII value
- The **chr()** function takes in an integer, and returns its ASCII character

Using chr() and ord()

- >>> chr(65)
- 'A'
- >>> chr(65+32)
- 'a'
- >>> ord('?')

63

>>> ord("d")

100

>>> ord("e")

101

AN HONORS UNIVERSITY IN MARYLAND

"Short Circuit" Evaluation

www.umbc.edu

Review: Complex Expressions

We can put multiple operators together!
 bool4 = a and (b or c)

- What does Python do first?
 - Computes (b or c)
 - Computes **a and** the result

This isn't strictly true!

Short Circuit Evaluation

- Python tries to be efficient (*i.e.*, lazy), and so it won't do any more work than necessary
 - If the remainder of an expression won't change the outcome, Python doesn't look at it
- This is called "short circuiting"
 - It's a powerful tool, and can simplify the conditionals in your programs

Short Circuit Evaluation – Rules

 For obvious reasons, short circuiting behaves differently for and and or statements

- "and" statements short circuit as soon as an expression evaluates to False
- "or" statements short circuit as soon as an expression evaluates to True

Short Circuiting – and

- Notice that in the expression:
 bool1 = a and (b or c)
- If a is False
- The rest of the expression doesn't matter
- Python will realize this, and if **a** is **False** won't bother with the rest of the expression

Short Circuiting – or

- Notice that in the expression:
 bool1 = a or (b or c)
- If a is True
- The rest of the expression doesn't matter
- Python will realize this, and if a is True won't bother with the rest of the expression

Causing Errors

• This can lead to "new" errors in old code

Simplifying Conditionals

• Order matters! You can use short circuiting to control what statements are reached

• While checking the validity of input, if the user can also enter a "Q" to quit

if num != QUIT and int(num), > MIN_VAL:

return num

This will only be reached if num is <u>not</u> "Q", so the cast to int() won't cause a problem

AN HONORS UNIVERSITY IN MARYLAND

Project 3

www.umbc.edu

Do Not Cheat on Project 3

- Yes, this project has been given before
 - Yes, in this class
 - Yes, we have all of the old projects to compare it to
- Yes, this project has solutions on the internet
 - Yes, we have copies of all of them
 - Yes, we will go looking for new ones after it's due
- Yes, you could pay someone else to do it
 - Yes, we know of the sites where you can get this done
 - Yes, we will spot "elegant" code that you didn't write

Deep Copying 2D Lists

- Why does this have to happen?
 - The path needs to be deep copied, so that it doesn't have any dead ends or backtracking in it

```
newPath = []
for i in range(len(path)):
    innerCopy = list( path[i] )
    newPath.append( innerCopy)
```

Daily CS History

- John von Neumann
 - Creator of merge sort
 - We'll learn this soon!
 - Helped develop what is now known as "von Neumann architecture" (not all his work)
 - Created a rigorous framework for quantum mechanics
 - Developed implosion mechanism for nuclear bombs

More Daily CS History

- ENIAC
 - Completed in 1946 at UPenn
 - Decommissioned in 1956
 - Computations were 2,400
 times faster than humans
 - Cost \$6.7 million to build
 - Meant to create artillery firing tables for the US Army

- Also used for studying thermonuclear feasibility

- **Even More Daily CS History**
- ENIAC Programmers
 - Kay McNulty, Betty Jennings, Betty Snyder, Marlyn Meltzer, Fran Bilas, and Ruth Lichterman
 - These women turned abstract ideas into working, bug-free code
 - First program run on ENIAC had <u>a million</u> individual punchcards
 - Programming was seen back then as "easy" work, akin to typing up a handwritten letter

27 All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Announcements

- Project 3 is due on Friday, December 8th
 - Design due on Friday, December 1st
- Survey #3 out on Friday, December 1st
 - Final exam metacognition quiz out on BB same day
- Exam wrappers handed back this week in lab
- Final exam is when?
- Friday, December 15th from 6 to 8 PM

28 All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Final Exam Locations

- Find your room ahead of time!
- ITE Building 102 Sections 22, 28, 32
- ITE Building 104 Sections 2, 3, 4, 5, 6
- Meyerhoff 030 Sections 8, 9, 10, 11, 12, 14, 17, 18, 20
- Performing Arts 132 Sections 15, 16, 31
- Sherman 003 Sections 23, 26, 29, 30
- Public Policy 105 Sections 21, 24, 27

Image Sources

- ASCII table (adapted from):
 - https://commons.wikimedia.org/wiki/File:ASCII-Table-wide.svg
- Generic kitten:
 - http://www.publicdomainpictures.net/view-image.php?image=87454
- Generic puppy:
 - http://www.publicdomainpictures.net/view-image.php?image=192231
- John von Neumann:
 - https://en.wikipedia.org/wiki/File:JohnvonNeumann-LosAlamos.gif
- ENIAC (adapted from):
 - https://commons.wikimedia.org/wiki/File:Eniac.jpg
- ENIAC programmers (adapted from):
 - https://commons.wikimedia.org/wiki/File:Reprogramming_ENIAC.png
- Mad emoji (adapted from):
 - https://commons.wikimedia.org/wiki/File:Twemoji_1f620.svg