
www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 21 – Project 3
and Miscellaneous Topics

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Last Class We Covered

• Dictionaries

– Creating

– Accessing

– Manipulating

– Methods

• Hashing

• Dictionaries vs Lists

2

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted3

Any Questions from Last Time?

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Today’s Objectives

• To understand more about how data is
represented inside the computer

– ASCII values

• To see the benefits of short circuit evaluation

• To discuss details of Project 3

– Deep copying 2D lists

4

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted5

ASCII Values

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

ASCII Values

• ASCII is how text is represented in computers

– Just like binary is how numbers are represented

• In ASCII, every character has a unique,
individual numerical code

– Lowercase and uppercase characters are separate

– Codes go from 0 to 127

• Why 127?

6

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted7

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted8

“control”
characters

symbols &
numbers

uppercase
letters

lowercase
letters

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Comparing Strings

• The values of the ASCII characters are used
when comparing strings together

– Which can lead to some “weird” results
>>> "cat" < "dog"

True

>>> "cat" < "Dog"

False

>>> "DOG" < "dog"

True

9

<?

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

More on Comparing Strings

• Gets even more complex when you start
adding in numbers and symbols
>>> "2" < "one"

True

>>> "good?" < "good!"

False

>>> "UK" < "U.K."

False

10

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Rules for Comparisons

• To avoid (some) of these issues:

• Always use .lower() for comparing strings

• Pay attention to symbols

– e.g., spaces, hyphens, punctuation, etc.

– Either remove them, or keep
them in mind as part of the order

11

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

ASCII Characters to ASCII Values

• We can convert between ASCII characters and
their values using ord() and chr()

• The ord() function takes in a single
character, and returns its ASCII value

• The chr() function takes in an integer,
and returns its ASCII character

12

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Using chr() and ord()

>>> chr(65)

'A'

>>> chr(65+32)

'a'

>>> ord('?')

63

>>> ord("d")

100

>>> ord("e")

101

13

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted14

“Short Circuit” Evaluation

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Review: Complex Expressions

• We can put multiple operators together!
bool4 = a and (b or c)

• What does Python do first?

– Computes (b or c)

– Computes a and the result

15

This isn’t
strictly true!

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Short Circuit Evaluation

• Python tries to be efficient (i.e., lazy), and so it
won’t do any more work than necessary

– If the remainder of an expression won’t change
the outcome, Python doesn’t look at it

• This is called “short circuiting”

– It’s a powerful tool, and can simplify the
conditionals in your programs

16

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Short Circuit Evaluation – Rules

• For obvious reasons, short circuiting behaves
differently for and and or statements

• “and” statements short circuit as soon as an
expression evaluates to False

• “or” statements short circuit as soon as an
expression evaluates to True

17

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Short Circuiting – and

• Notice that in the expression:

bool1 = a and (b or c)

• If a is False

• The rest of the expression doesn’t matter

• Python will realize this, and if a is False

won’t bother with the rest of the expression

18

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Short Circuiting – or

• Notice that in the expression:

bool1 = a or (b or c)

• If a is True

• The rest of the expression doesn’t matter

• Python will realize this, and if a is True

won’t bother with the rest of the expression

19

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Causing Errors

• This can lead to “new” errors in old code
>>> a = True

>>> # Variables b and c not defined

>>> a or (b and c)

True

>>> a = False

>>> a or (b and c)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'b' is not defined

20

Python stopped at
the “or”, so it never

saw b or c

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Simplifying Conditionals

• Order matters! You can use short circuiting to
control what statements are reached

• While checking the validity of input, if
the user can also enter a “Q” to quit
if num != QUIT and int(num) > MIN_VAL:

return num

21

This will only be reached if
num is not “Q”, so the cast to
int() won’t cause a problem

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted22

Project 3

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Do Not Cheat on Project 3

• Yes, this project has been given before

– Yes, in this class

– Yes, we have all of the old projects to compare it to

• Yes, this project has solutions on the internet

– Yes, we have copies of all of them

– Yes, we will go looking for new ones after it’s due

• Yes, you could pay someone else to do it

– Yes, we know of the sites where you can get this done

– Yes, we will spot “elegant” code that you didn’t write

23

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Deep Copying 2D Lists

• Why does this have to happen?

– The path needs to be deep copied, so that it
doesn’t have any dead ends or backtracking in it

newPath = []

for i in range(len(path)):

innerCopy = list(path[i])

newPath.append(innerCopy)

24

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

• John von Neumann
– Creator of merge sort

• We’ll learn this soon!

– Helped develop what is now
known as “von Neumann
architecture” (not all his work)

– Created a rigorous framework
for quantum mechanics

– Developed implosion mechanism
for nuclear bombs

25

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

• ENIAC

– Completed in 1946 at UPenn

• Decommissioned in 1956

– Computations were 2,400
times faster than humans

– Cost $6.7 million to build

– Meant to create artillery
firing tables for the US Army

– Also used for studying thermonuclear feasibility

26

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

• ENIAC Programmers

– Kay McNulty, Betty Jennings, Betty Snyder, Marlyn
Meltzer, Fran Bilas, and Ruth Lichterman

– These women turned abstract
ideas into working, bug-free code

• First program run on ENIAC had
a million individual punchcards

– Programming was seen back then
as “easy” work, akin to typing up
a handwritten letter

27

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Announcements

• Project 3 is due on Friday, December 8th

– Design due on Friday, December 1st

• Survey #3 out on Friday, December 1st

– Final exam metacognition quiz out on BB same day

• Exam wrappers handed back this week in lab

• Final exam is when?

• Friday, December 15th from 6 to 8 PM
28

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Final Exam Locations

• Find your room ahead of time!

• ITE Building 102 - Sections 22, 28, 32

• ITE Building 104 - Sections 2, 3, 4, 5, 6

• Meyerhoff 030 - Sections 8, 9, 10, 11, 12, 14, 17, 18, 20

• Performing Arts 132 - Sections 15, 16, 31

• Sherman 003 - Sections 23, 26, 29, 30

• Public Policy 105 - Sections 21, 24, 27

29

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Image Sources
• ASCII table (adapted from):

– https://commons.wikimedia.org/wiki/File:ASCII-Table-wide.svg

• Generic kitten:
– http://www.publicdomainpictures.net/view-image.php?image=87454

• Generic puppy:
– http://www.publicdomainpictures.net/view-image.php?image=192231

• John von Neumann:
– https://en.wikipedia.org/wiki/File:JohnvonNeumann-LosAlamos.gif

• ENIAC (adapted from):
– https://commons.wikimedia.org/wiki/File:Eniac.jpg

• ENIAC programmers (adapted from):
– https://commons.wikimedia.org/wiki/File:Reprogramming_ENIAC.png

• Mad emoji (adapted from):
– https://commons.wikimedia.org/wiki/File:Twemoji_1f620.svg

30

